The Influence of Heterogeneous Meninges on the BrainMechanics under Primary Blast Loading
نویسندگان
چکیده
In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent the mechanical response of the brain tissue over a large strain/high frequency range applicable for blast scenarios. The effect of meninges on the brain response is examined. Results show that heterogeneous composite structures of the head have a major influence on the intracranial pressure, maximum shear stress, and maximum principal strain in the brain, which is associated with traumatic brain injuries. The meninges serving as protective layers are revealed by mitigating the dynamic response of the brain. In addition, appreciable changes of the pressure and maximum shear stress are observed on the material interfaces between layers of tissues. This may be attributed to the alternation of shock wave speed caused by the impedance mismatch.
منابع مشابه
Influence of Sudden Column Loss on Dynamic Response of Steel Moment Frames under Blast Loading
Modeling buildings response to blast and subsequent progressive collapse interested more and more researchers during the past two decades. Due to the threat from extreme loading, efforts have been made to develop methods of structural analysis and design. In this paper, progressive collapse capacity of steel moment frames was first investigated using alternate load path method, then a nonlinear...
متن کاملEffect of Surface Blasting on Subway Tunnels- A Parametric Study
During wars and crises, the underground tunnels are used as a safe space. Therefore, the stability and safety of them under a blast is of particular importance. In this paper, the Finite Difference Method has been used to study the influence of the change in geotechnical parameters and depth on surface blasting on subway tunnels. Results showed that increasing the internal friction angle, modul...
متن کاملNumerical modeling of primary thoracic trauma because of blast
Purpose: Since explosive blasts continue to cause casualties in both civil and military environments, there is a need for an understanding of the mechanisms of blast trauma at the human organ level, plus a more detailed predictive methodology. The primary goal of this research was to develop a finite element model capable of predicting primary blast injury to the lung so as to assist in the d...
متن کاملFinite Element Analysis for CFST Columns under Blast Loading
The columns of frame structures are the key load-bearing components and the exterior columns are susceptible to attack in terrorist blasts. When subjected to blast loads, the columns would suffer a loss of bearing capacity to a certain extent due to the damage imparted which may lead to their collapse and even cause the progressive collapse of the whole structure . The concrete-filled steel col...
متن کاملExperimental Study of Masonry Structure Under Impact Loading and Comparing it with Numerical Modeling Results via Finite Element Model Updating
Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012